
Advanced NMR & 
Imaging

Week 5: Part II - A Quantum Mechanical
Description of Pulsed NMR Spectroscopy



Objectives
• Understand the quantum description of time-

domain NMR spectroscopy



We understand this?
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But do we understand this?
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Pulsed Fourier Transform NMR

Fourier TransformationFree Induction Decay

I w( ) = S t( )exp -iwt{ }dtÚ
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Pulsed Fourier Transform NMR
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NMR experiments observe the voltage induced in a detection coil by oscillating 
bulk magnetic moments as they return to equlibrium. 

The oscillations are induced by perturbing the system with a radio-frequency 
pulse. (Since the system is time-dependent, it must be out of equilibrium)

In following we will investigate the origin of these dynamic nuclear 
magnetic moments.

What exactly is this??

What exactly is that??



Magnetic Moments
NMR is concerned solely with the motion of nuclear magnetic moments: that is what is detected 
in the experiment. The nucleus possesses an intrinsic magnetic moment of classical energy

 E = -µ . B , (1.1)

where   µ  is the magnetic moment and   B an external magnetic field. The corresponding
Hamiltonian in quantum mechanics is the Zeeman Hamiltonian

   hH = -µ ‡B . (1.2)

This Zeeman Hamiltonian is added to the purely nuclear Hamiltonian and it turns out that

 µ = ghI , (1.3)

where g is the magnetogyric ratio and where   I  is the operator corresponding to sp in. Thus we
obtain in a static external magnetic field:   B = 0,0,B0( )

  H Z = -gB0Iz . (1.4)

Thus, to understand NMR we need to understand the properties and dynamics of spin operators.
For a more detailed methodic treatment see, for example, Goldman.

.



Magnetic Moments
why we need to do quantum mechanics

  
d
dt

y =
.
y = -iH y

The Schrodinger Equation of Motion

the motion of
the state

the system Hamiltonian

the state

how do we represent the state of the system?



Magnetic Moments
ψ = the state of a single spin

(For a single spin I = 1/2, any state of the system can be represent as a linear 
combination of the two basis states, and drawn as vector. (Here directly in the state 
space (Hilbert space))

ψ
α

βcβ

cα



Magnetic Moments
ψ = the state of a single spin

(An alternative basis set is the three components of angular momentum, and
and �. (Liouville space))

axIx + ayIy + azIz

Ix

Iz

Iy



Magnetic Moments
ψ = the state of a single spin

(An alternative basis set is the three components of angular momentum, and
and �. (Liouville space))

axIx + ayIy + azIz

Ix

Iz

Iy

an NMR sample contains about 1021 spins....
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The Density Matrix

ψ = the state of a single spin

The density operator: the average state of a statistical
ensemble of spins. 

σ = P ψ( )∫ ψ ψ dτ



Equation of Motion

The Schrodinger Equation of Motion of the Density Operator

the motion of
the density operator

the system Hamiltonian

the density operator

The Liouville - von Neumann Equation

 
d
dt

s = -i H ,s[ ]



Equation of Motion

The Liouville - von Neumann equation:

The solution for a time independent Hamiltonian: 

 
d
dt

s = -i H ,s[ ]

  s t( ) = exp -iHt( )s 0( )exp +iHt( )

the state at 
a given time the system Hamiltonian

the initial state 



Spin Dynamics

σ t( ) = exp −iℋt( )σ 0( )exp +iℋt( )

the state at 
a given time the system Hamiltonian

the initial state 

The motion of the ensemble magnetic 
moment (bulk magnetization, 
polarisation), is a rotation 
around an axis defined by 
the Hamiltonian

ℋe�f

θ

ℋZ

ℋ1



The Initial State at Equilibrium
The density operator: the average state of a statistical
ensemble of spins. 

At thermal equilibrium

In an ordinary ensemble, there is no phase coherence,
and thus there is no net transverse component

σeq ∝ I z



The Vector Model of Magnetic Resonance

the state at 
a given time the system Hamiltonian

the initial state 

s t( ) = exp -iw0Izt{ }Iz exp +iw0Izt{ }

1. Equilibrium. The net
magnetization is aligned 
along the direction of the 
main field (z-axis).

s(0)

Hz

callaghan on youtube...



Conclusions: Part I
• NMR spectroscopy detects transitions between 

different nuclear spin states. The principal interaction is 
the Zeeman Interaction 

• The Zeeman interaction is modified (perturbed) by the 
scalar coupling and the chemical shift. 

• Nuclear magnetic moments are proportional to the spin 
operator. 

• The dynamics of spin operators are governed by the 
Schrodinger equation of motion.



Conclusions: Part I

• The density operator describes the quantum state 
of an ensemble of spins. 

• The equation of motion of the density operator is a 
rotation around an axis defined by the Hamiltonian 
for the system, at a frequency given by the 
magnitude of the Hamiltonian.



Pulsed FTNMR

How can we make the spins move?



How can we tip the magnetization out of equilibrium? 
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Perturbing the Spins
2. Magnetic Resonance

Adding a small oscillating field perpendicular to the main field

can cause resonance effects, even for B1 << B0.

H1

H = -gB0IZ - gB1(Ixcos(wt) + Iysin(wt))



Perturbing the Spins
2. Magnetic Resonance

to study the effect of this time dependent Hamiltonian

the most enlightening method is to remove the time dependence by 

transforming to a rotating frame.

This can be understood geometrically (visually)

or mathematically....

H = -gB0IZ - gB1(Ixcos(wt) + Iysin(wt))



(a)

(b)

The Rotating Frame 

A child riding on a merry-go-round executes a 
complex motion as seen by a fixed observer. 

If the observer stands on the merry-go-round 
the child appears to be executing a simple up–
down motion.
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The Rotating Frame 

In a reference frame rotating at the Larmor frequency, transverse magnetisation 
appears static (here fixed on the x axis).

(Of course the precession has not really stopped, it is just that we are viewing it 
differently.)



The Rotating Frame

In order to render   H  time independent we use a change of representation. Starting with

  
d
dt
s = i H ,s[ ].

a change of representation goes as follows: given an operator Q we can associate it to another
operator ˜ Q  where

˜ Q = U t( )QU † t( ) (1.51)

where U t( )  is defined by the equation
 

 
d

dt
U t( ) = iAU t( )

 

with A a Hermitian operator which could be time dependent.



The Rotating Frame
Thus for ˜ s  we have
 

 

d
dt

˜ s =
d
dt

UsU†

= ˙ U sU† + U ˙ s U† + Us ˙ U †
 

and by substitution of ˙ U , ˙ s , ˙ U †
 

 

  
d
dt

˜ s = iAUsU† -U H ,s[ ]U† - iUsU†A .

 

Since U is unitary it follows that

  
U H ,s[ ]U† = UHU†,UsU†[ ] = ˜ H , ˜ s [ ]

and we obtain
 

 

  
d
dt

˜ s = -i ˜ H - A( ), ˜ s [ ] . (1.56)

 

In the new representation, defined by equation (1.51), the evolution of ˜ s  is the same as if the
system were subjected to an effective Hamiltonian
 

   H eff = ˜ H - A . (1.57)



The Rotating Frame
Returning to th e problem we cho se

A = wIz

in equation (1.52 ) and we have U = exp(iAt) = exp(iwIzt) . This change of representation 

corresponds to a rotation a round z at a frequency -w, hence the name "rotating frame."

The time-dependent term in   H can be written

Ix coswt + Iy sinwt = exp -iwIzt( )Ix exp iwIzt( )
=U† t( )IxU t( )

The effective Hamiltonian in the rotating frame is therefore 

H eff = (w0 -w)Iz + w1UU †IxUU † = (w0 -w)Iz + w1Ix .

This Hamiltonian is time-independent. It i s of the form of the Zeeman interaction with an 
effective f ield Beff with components

Bz = - w0 -w( ) g  and Bx = B1.

When w0 = w the effective fi eld is purely transverse and the magnetization precesses around the x axis
with a frequency w 1 corresponding to the magni tude of the app lied magnetic fie ld. If the 

irradiation is appl ied for a time t, such that  w1t = p 2 , I z
 w ill be converted into pure I y

z

y

xBeff,x

BeffBeff,z



The Rotating Frame: Resonance

This Hamiltonian is time-independent. It i s of the form of the Zeeman interaction with an 
effective f ield Beff with components

Bz = - w0 -w( ) g  and Bx = B1.

When w0 = w the effective fi eld is purely transverse and the magnetization precesses around the x axis 
with a frequency w 1 corresponding to the magni tude of the app lied magnetic fie ld. If the
irradiation is appl ied for a time t, such that  w1t = p 2 , I z

 w ill be converted into pure I y

z

y

x w1

s(0) = Iz

s(t) = Iy

For any value of w1.



Radiofrequency Irradiation & Effective Field
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Pulsed FTNMR Spectroscopy

1. Equilibrium. The net
magnetization is aligned 
along the direction of the 
main field (z-axis).

2. A field is applied in the 
transverse plane. The
magnetization of the 
ensemble precesses around 
the field.

3. The field is removed
leaving a net transverse 
component of the ensemble 
magnetization. This coherence 
then starts to precess around 
the main field.

H x

s(0)
Hz

H z

H
1

t2

w1 = -gB1

w = carrier frequency,
chosen by the operator to be 
near to the resonance frequencies

w1t = p/2

1/w

w1

t
1 2 3



Dances with Spins

H x

Spin Inversion: w1t = p 
(size of signal? state of polarisation?)

"Self-Induced Transparency" w1t = 2p



Dances with Spins: Inversion-Recovery

p/2p t2
t

Iz -Iz aIz aIx a(Ixcos(w0t2) + Iysin(w0t2)) 

Longitudinal Relaxation (T1)

a t( ) =a0 1- 2exp t T1( )( )



Dances with Spins: Inversion-Recovery

p/2p t2
t

Multiple-Pulse NMR:
Measurement of Longitudinal Relaxation Rates (T1)

a t( ) =a0 1- 2exp t T1( )( )



Conclusions: Part II
• The equation of motion of the density operator is a rotation 

around an axis defined by the Hamiltonian for the system, 
at a frequency given by the magnitude of the Hamiltonian. 

• The system can be perturbed from equilibrium by the 
application of weak resonant (radiofrequency) fields in the 
transverse plane. 

• An on-resonance pulse induces a rotation perpendicular to 
the direction of the applied field in the rotating frame. 

• A “π/2 pulse” is induced by an on-resonant transverse field 
of duration ω1τ = π/2. 



Conclusions: Part II
• After a pulse, the transverse component of the density operator 

will oscillate around the z-axis (B0) at the Larmor frequency. 

• This oscillating magnetic moment will induce a current in a 
detection coil. This is the free induction decay. 

• Population inversion (a 180° pulse) is achieved by an on-
resonant transverse field of duration ω1τ = π. 

• Signals can be acquired after multiple pulses and delays.  

• The inversion-recovery pulse sequence allows measurement of 
T1.



Homework
Learn the course material  

(use the other resources when needed) 

If it helps, review the lecture on the vector (classical) 
model of NMR from Basic NMR  

(available on this week’s Moodle for ANMR)

(Don’t Panic!)




